
Slide 1 of 81 NTFS

FAT v NTFS

 However, while FAT is acceptable for most uses, but:

 very old

 limited

 relatively simplistic file system.

 FAT has

 few of the security,

 capacity and reliability features

 that are needed by high-end users, and especially, servers and

workstations in a corporate networking environment.

 Recognizing that FAT was not a worthy basis upon which to build its

new Windows NT operating system, Microsoft created the New

Technology File System, or NTFS.

 The goals behind NTFS were to provide a flexible, adaptable, high-

security and high-reliability file system, to help position Windows NT

as a "serious" operating system for business and corporate users.

Slide 2 of 81 NTFS

Overview and History of NTFS

 NTFS is definitely "new" from the standpoint that it is not based on

the old FAT file system.

 However, NTFS is not entirely new, because some of its concepts

were based on another file system that Microsoft was involved with

creating: HPFS.

 Before there was Windows NT, there was OS/2.

 OS/2 was a joint project of Microsoft and IBM in the early 1990s; the

two companies were trying to create the next big success in the

world of graphical operating systems. They succeeded, to some

degree, depending on how you are measuring success. :^) OS/2 had

some significant technical accomplishments, but suffered from

marketing and support issues.

 When they did this, they borrowed many key concepts from OS/2's

native file system, HPFS, in creating NTFS.

Slide 3 of 81 NTFS

NTFS goals

 Reliability: One important characteristic of a "serious" file system is

that it must be able to recover from problems without data loss

resulting. NTFS implements specific features to allow important

transactions to be completed as an integral whole, to avoid data

loss, and to improve fault tolerance.

 Security and Access Control: A major weakness of the FAT file

system is that it includes no built-in facilities for controlling access

to folders or files on a hard disk. Without this control, it is nearly

impossible to implement applications and networks that require

security and the ability to manage who can read or write various

data.

 Breaking Size Barriers: In the early 1990s, FAT was limited to the

FAT16 version of the file system, which only allowed partitions up to 4

GiB in size. NTFS was designed to allow very large partition sizes,

in anticipation of growing hard disk capacities, as well as the use of

RAID arrays.

Slide 4 of 81 NTFS

NTFS goals

 Storage Efficiency: Again, at the time that NTFS was developed,

most PCs used FAT16, which results in significant disk space due to

slack. NTFS avoids this problem by using a very different method

of allocating space to files than FAT does.

 Long File Names: NTFS allows file names to be up to 255

characters, instead of the 8+3 character limitation of conventional

FAT.

 Networking: While networking is commonplace today, it was still in its

relatively early stages in the PC world when Windows NT was

developed. At around that time, businesses were just beginning to

understand the importance of networking, and Windows NT was given

some facilities to enable networking on a larger scale. (Some of the

NT features that allow networking are not strictly related to the file

system, though some are.)

Slide 5 of 81 NTFS

NTFS Versions
 NTFS 1.0 or NTFS 3.1

 NTFS 1.1 / 4.0

 NTFS 5.0: news

 1. Reparse Points: Files and directories within the file system can

have actions associated with them, so that when the file system

object is accessed in a particular way, the action is carried out.

 2. Improved Security and Permissions: The mechanisms for

managing file system security and assigning permissions were

improved.

 3. Change Journals: Disk volumes can be set to keep track of all

operations performed on the files and directories they contain.

 4. Encryption: NTFS 5.0 allows you to encrypt files and

automatically decrypt them as they are read.

Slide 6 of 81 NTFS

NTFS Versions

 5. Disk Quotas: Administrators can track how much disk space is

being used by users or groups of users, and even limit disk space use

if necessary.

 6. Sparse File Support: To save space on the disk, support was

added for the more efficient storage of sparse files, which are large

files that are mostly empty.

 7. Disk Defragmenter: Windows 2000 includes a disk

defragmentation program, where Windows NT did not. (Arguably,

this is an operating system feature of Windows 2000, and not a file

system enhancement, but I thought I'd mention it anyway, since it is

obviously file system related.)

Slide 7 of 81 NTFS

NTFS Architecture Overview

 Virtually, every structure in NTFS is a file,

 including the structures used:

 to manage the partition

 maintain statistics

 control information about the partition itself.

 The control information is stored in a set of special files that
are created when an NTFS partition is first created;

 these are called metadata files and include such items as:

 lists of files on the partition

 volume information

 cluster allocations, and so forth.

 One exception to the "everything is a file" rule is the partition
boot sector,

 which precedes the metadata files on an NTFS partition and

 controls the most basic of NTFS operations,

 such as loading the operating system.

Slide 8 of 81 NTFS

NTFS Architecture Overview-cont.

 Every file in an NTFS partition is a collection of attributes;

 this even includes the data that the file contains, which is just

considered one of many attributes.

 Other attributes include items such as the file's name and size.

 This arrangement really a database-like setup—

 the operating system view files as being objects with various

characteristics, and manages them accordingly.

 This makes it easy to manage files and add attributes if needed in the

future.

 Internally, NTFS stores all files (including metadata files) using a

cluster system--each file is broken into clusters, each of which

contain a binary number of 512-byte sectors.

 On the surface, this is somewhat similar to how FAT stores data,

 but the implementation of clusters in NTFS is somewhat

different.

Slide 9 of 81 NTFS

NTFS Volume Boot Sector
 The NTFS volume boot sector begins in the first sector of the

partition, and consists of 2 different primary structures. Again,
these are similar to the structures in a FAT volume boot sector:

 1. BIOS Parameter Block: This is a block of data that contains
fundamental information about the volume itself. This block
identifies the volume as an NTFS partition, and includes such
information as the volume label and its size. In addition, NTFS
provides for an extended BIOS parameter block, which contains
additional information about the volume such as the location of
the key metadata files.

 2. Volume Boot Code: This is a small block of program code that
instructs the system on how to load the operating system. With
an NTFS volume, this code will be specific to Windows NT or 2000,
whichever is installed on the system. It will generally load NTLDR,
the NT loader program, and then transfer control to it to load the rest
of the operating system. Note that this code is also present in the
partition as a system (metadata) file.

Slide 10 of 81 NTFS

NTFS System (Metadata) Files

Slide 11 of 81 NTFS

NTFS System (Metadata) Files

Slide 12 of 81 NTFS

Master File Table (MFT)
 Probably the most important of the key system (metadata) files

 that define an NTFS volume,

 MFT is the place where information about every file and directory on an

NTFS volume is stored.

 The MFT is in essence a relational database table,

 containing various attributes about different files.

 It acts as the "starting point" and central management feature of an NTFS

volume--sort of a "table of contents" for the volume, if you will.

 It is somewhat analog to the file allocation table in a FAT partition, but is

much more than just a list of used and available clusters.

 When any file or directory is created on the NTFS volume, a record is

created for it within the MFT.

 The size of each record in the MFT is equal to the cluster size of the

volume, but with a

 minimum of 1,024 bytes 1K

 maximum of 4,096 4K

Slide 13 of 81 NTFS

MFT cont.

 The system uses these MFT records to store information about the

file or directory;

 this information takes the form of attributes.

 Since the size of each MFT record is limited,

 there are different ways that NTFS can store a file's attributes:

 as either resident attributes

 that are stored within the MFT record,

 or non-resident attributes,

 stored either in additional MFT records

 or in extents that lie outside the MFT.

 Remember that under NTFS, there is no special distinction between

the data in a file and the attributes that describe the file—

 the data itself is just the contents of the "data attribute".

Slide 14 of 81 NTFS

MFT and small files

 This has an interesting implication for small files.

 If the amount of space required for

 all of the attributes of a file,

 including the data it contains,

 is smaller than the size of the MFT record,

 the data attribute will be stored resident—

 within the MFT record itself.

 Thus, such files require no additional storage space on the

volume, and also do not require separate accesses to the disk to

check the MFT and then read the file, which improves

performance.

Slide 15 of 81 NTFS

MFT and larger files

 Larger files get more complicated.

 As additional attributes are added to a file—

 either standard attributes defined by the system or

 new ones created by the user--and as the existing attributes are
expanded in size,

 they may no longer fit into the MFT record for the file.

 If this occurs, the attributes will be moved out of the MFT and be
made non-resident by the file system.

 Large files will have their data stored as external attributes

 Very large files may even get so large

 that the attributes containing pointers to the file data

 become external attributes themselves!

Slide 16 of 81 NTFS

MFT zone

 As more files and directories are added to the file system, it becomes

necessary for NTFS to add more records to the MFT.

 Since keeping the MFT contiguous on the disk improves performance,

 when an NTFS volume is first set up,

 the operating system reserves about 12.5% of the disk space immediately

following the MFT;

 this is sometimes called the "MFT Zone".

 if there are enough entries placed in the MFT, as it expands it will use up the

"MFT Zone".

 When this happens, the operating system will automatically allocate more

space elsewhere on the disk for the MFT.

 This allows the MFT to grow to a size limited only by the size of the

volume, but this fragmentation of the MFT may reduce performance by

increasing the number of reads required for some files, and the MFT

cannot generally be defragmented.

Slide 17 of 81 NTFS

NTFS Partitions and Partition Sizes

 Under NTFS,

 the maximum size of a partition (volume) is in fact

 2 to the 64th power.

 This is equal to 16 binary exa-bytes,

 or 18,446,744,073,709,551,616 bytes.

 P Q T G M K

 Does that seem large enough for your needs? :^)

 Well, many problems with PC hard disks occurred when

unintentional size limits were imposed by engineers who figured that,

for example, "2 gigabytes ought to be enough".

 However, with 18 billion gigabytes it would seem that you should

be safe for a while in NTFS. :^)

Slide 18 of 81 NTFS

NTFS Clusters and Cluster Sizes

 While both FAT and NTFS use clusters,

 they use them in a very different way, of course.

 This is due to the differences in the internal structures of the two file

systems.

 Some of the performance issues associated with very large FAT file

system partitions are due to the fact

 that the file allocation tables grow to a very large size,

 and FAT was never created with extremely large volumes in mind.

 In contrast, NTFS is designed

 to be able to better handle the large internal structures

 (such as the MFT) that occur with large partitions.

Slide 19 of 81 NTFS

NTFS Clusters and Cluster Sizes (4K)

4 kiB for all partitions over 2.0 GiB, regardless of their size.

The reason for the difference between operating systems is perhaps a bit

surprising: it has to do with NTFS's built-in file-based compression.

FAT

32

Slide 20 of 81 NTFS

NTFS Directories and Files

 From an external, structural perspective,

 NTFS generally employs the same methods for organizing files
and directories as the FAT file system

 This is usually called the hierarchical or directory tree model.

 The "base" of the directory structure is the root directory, which is
actually one of the key system metadata files on an NTFS volume.

 While NTFS is similar to FAT in its hierarchical structuring of
directories, it is very different in how they are managed internally.

 One of the key differences is that

 In FAT volumes,

 directories are responsible for storing most of the key information
about files;

 the files themselves contain only data.

 In NTFS,

 files are collections of attributes, so they contain their own
descriptive information, as well as their own data.

 An NTFS directory pretty much stores only information about the
directory itself, not about the files within the directory.

Slide 21 of 81 NTFS

NTFS directory record in MFT

 The MFT record for the directory contains the following information and
NTFS attributes:

 1. Header (H):

 This is a set of low-level management data used by NTFS to manage the
directory.

 It includes sequence numbers used internally by NTFS and pointers to the
directory's attributes and free space within the record.

 (Note that the header is part of the MFT record but not an attribute.)

 2. Standard Information Attribute (SI):

 This attribute contains "standard" information stored for all files and directories.

 This includes fundamental properties such as date/time-stamps for when the
directory was created, modified and accessed.

 It also contains the "standard" attributes usually associated with a file (such as
whether the file is read-only, hidden, and so on.)

 3. File Name Attribute (FN):

 This attribute stores the name associated with the directory.

 Note that a directory can have multiple file name attributes,

 to allow the storage of the "regular" name of the file, along with an MS-DOS
short filename alias and also POSIX-like hard links from multiple directories.
See here for more on NTFS file naming.

Slide 22 of 81 NTFS

NTFS directory in MFT

 4. Index Root Attribute:

 This attribute contains the actual index of files contained within the
directory, or part of the index if it is large.

 If the directory is small, the entire index will fit within this attribute in
the MFT;

 if it is too large, some of the information is here and the rest is stored in
external index buffer attributes, as described below.

 5. Index Allocation Attribute:

 If a directory index is too large to fit in the index root attribute,

 the MFT record for the directory will contain an index allocation
attribute,

 which contains pointers to index buffer entries containing the rest of
the directory's index information.

 6. Security Descriptor (SD) Attribute:

 This attribute contains security information that controls access to the
directory and its contents.

 The directory's Access Control Lists (ACLs) and related data are
stored here.

Slide 23 of 81 NTFS

NTFS directories

 small directories are stored entirely within their MFT entries, just like small
files are.

 Larger ones have their information broken into multiple data records that are
referenced from the root entry for the directory in the MFT.

 NTFS uses a special way of storing these index entries however, compared to
traditional PC file systems.

 FAT
 FAT FS uses a simple linked-list arrangement for storing large directories:

 the first few files are listed in the first cluster of the directory,

 and then next files go into the next cluster, which is linked to the first, and so on.

 This is simple to implement,
 but means that every time you look at the directory

 you must scan it from start to end and

 then sort it for presentation to the user.

 It also makes it time-consuming to locate individual files in the index,
especially with very large directories.

Slide 24 of 81 NTFS

B trees

 To improve performance, NTFS directories use a special data

management structure called a B-tree.

 This is a concept taken from relational database design.

 In brief terms, a B-tree is a balanced storage structure that takes the form of

trees, where data is balanced between branches of the tree.

 (Note that the "B-tree" concept here refers to a tree of storage units that hold

the contents of an individual directory; it is a different concept entirely from that

of the "directory tree", a logical tree of directories themselves.)

 From a practical standpoint, the use of B-trees means that the directories

are essentially "self-sorting".

 There is a bit more overhead involved when adding files to an NTFS

directory, because they must be placed in this special structure.

 However, the payoff occurs when the directories are used.

 The time required to find a particular file under NTFS

 is dramatically reduced compared to an unsorted linked-list structure—

 especially for very large directories.

Slide 25 of 81 NTFS

NTFS Files and Data Storage
 Within NTFS,

 all files are stored in pretty much the same way:

 as a collection of attributes.

 This includes the data in the file itself, which is just another

attribute: the "data attribute", technically.

 You may also wish to review the discussion of NTFS attributes,

because understanding the difference between resident and non-

resident attributes is important to making any sense at all of the rest

of this page. ;^)

 The way that data is stored in files in NTFS depends on the size

of the file.

Slide 26 of 81 NTFS

File attributes

 The core structure of each file is based on the following
information and attributes that are stored for each file

 Header (H):

 The header in the MFT is a set of low-level management data used by
NTFS to manage the file.

 It includes sequence numbers used internally by NTFS and pointers to
the file's other attributes and free space within the record.

 (Note that the header is part of the MFT record but not an attribute.)

 Standard Information Attribute (SI):

 This attribute contains "standard" information stored for all files and
directories.

 This includes fundamental properties such as date/time-stamps for
when the file was created, modified and accessed.

 It also contains the "standard" FAT-like attributes usually associated
with a file (such as whether the file is read-only, hidden, and so on.)

Slide 27 of 81 NTFS

File attributes

 File Name Attribute (FN):

 This attribute stores the name associated with the file.

 Note that a file can have multiple file name attributes, to allow the storage

of the "regular" name of the file, along with an MS-DOS short filename

alias and also POSIX-like hard links from multiple directories.

 Data (Data) Attribute:

 This attribute stores the actual contents of the file.

 Security Descriptor (SD) Attribute:

 This attribute contains security information that controls access to the

file.

 The file's Access Control Lists (ACLs) and related data are stored here.

Slide 28 of 81 NTFS

Larger files
 If the file is too large for all of the attributes to fit in the MFT, NTFS begins a

series of "expansions" that move attributes out of the MFT and and make them
non-resident. The sequence of steps taken is something like this:

 1. First, NTFS will attempt to store the entire file in the MFT entry, if
possible. This will generally happen only for rather small files.

 2. If the file is too large to fit in the MFT record, the data attribute is made
non-resident. The entry for the data attribute in the MFT contains pointers
to data runs (also called extents) which are blocks of data stored in
contiguous sections of the volume, outside the MFT.

 3. The file may become so large that there isn't even room in the MFT
record for the list of pointers in the data attribute. If this happens, the list of
data attribute pointers is itself made non-resident. Such a file will have no
data attribute in its main MFT record; instead, a pointer is placed in the main
MFT record to a second MFT record that contains the data attribute's list
of pointers to data runs.

 4. NTFS will continue to extend this flexible structure if very large files
are created. It can create multiple non-resident MFT records if needed to
store a great number of pointers to different data runs. Obviously, the
larger the file, the more complex the file storage structure becomes.

Slide 29 of 81 NTFS

Extents (data runs)

 The data runs (extents) are where most file data in an NTFS volume is

stored.

 These runs consist of blocks of contiguous clusters on the disk.

 The pointers in the data attribute(s) for the file contain

 a reference to the start of the run,

 and also the number of clusters in the run

 The start of each run is identified using a virtual cluster number or VCN.

 The use of a "pointer+length" scheme means that under NTFS,

 it is not necessary to read each cluster of the file

 in order to determine where the next one in the file is located.

 This method also reduces fragmentation of files compared to the FAT setup.

Slide 30 of 81 NTFS

NTFS File Size

 This flexible system allows files to be extended in size

virtually indefinitely.

 In fact, under NTFS, there is no maximum file size.

 A single file can be made to take up the entire contents of a

volume (less the space used for the MFT itself and other

internal structures and overhead.)

 NTFS also includes some features that can be used to more

efficiently store very large files.

 One is file-based compression, which can be used to let large files

take up significantly less space.

 Another is support for sparse files, which is especially well-suited

for certain applications that use large files that have non-zero data

in only a few locations.

Slide 31 of 81 NTFS

Limits

 Table 13.5 NTFS Size Limits

 Description Limit

 Maximum file size Theory: 16 exabytes minus 1 KB (264 bytes minus 1 KB)
 Implementation: 16 terabytes minus 64 KB (244 bytes-64 KB)

 Maximum volume size Theory: 264 clusters minus 1 cluster
 Implementation: 256 terabytes minus 64 KB (232 clusters - 1 cluster)

 Files per volume 4,294,967,295 (232 minus 1 file)

 Table 13.6 FAT32 Size Limits

 Description Limit

 Maximum file size 4 GB minus 1 byte (232 bytes minus 1 byte)

 Maximum volume size 32 GB (implementation)

 Files per volume 4,177,920

 Maximum number of files and subfolders within a single folder 65,534
 (The use of long file names can
significantly reduce the number of available files and subfolders within a folder.)

 Table 13.7 FAT16 Size Limits

 Description Limit

 Maximum file size 4 GB minus 1 byte (232 bytes minus 1 byte)

 Maximum volume size 4 GBFiles per volumeApproximately 65,536 (216 files)

 Maximum number of files and folders within the root folder 512 (Long file names can reduce the
 number of available files and folders in the root folder.)

Slide 32 of 81 NTFS

NTFS File Naming
 The following are the characteristics of regular file names (and

directory names as well) in the NTFS file system:

 Length: Regular file names can be up to 255 characters in NTFS.

 Case: Mixed case is allowed in NTFS file names, and NTFS will
preserve the mixed case, but references to file names are case-
insensitive.

 Characters: Names can contain any characters, including spaces,
except the following (which are reserved because they are
generally used as file name or operating system delimiters or
operators): ? " / \ < > * | :

 Unicode Storage: All NTFS file names are stored in a format
called Unicode..

 Unicode is an international, 16-bit character representation format
that allow for thousands of different characters to be stored.

 Unicode is supported throughout NTFS.

Slide 33 of 81 NTFS

Alias and file name attribute

 You may recall that when Windows 95's VFAT file system introduced long
file names to Microsoft's consumer operating systems, it provided for an
aliasing feature. The file system automatically creates a short file name
("8.3") alias of all long file names, for use by older software written before
long file names were introduced. NTFS does something very similar. It
also creates a short file name alias for all long file names, for
compatibility with older software. (If the file name given to the file or
directory is short enough to fit within the "8.3", no alias is created, since
it is not needed). It's important to realize, however, that the similarities
between VFAT and NTFS long file names are mostly superficial. Unlike the
VFAT file system's implementation of long file names, NTFS's
implementation is not a kludge added after the fact.

 NTFS was designed from the ground up to allow for long file names.

 File names are stored in the file name attribute for every file (or directory), in
the Master File Table.
 In fact, NTFS supports the existence of multiple file name attributes within

each file's MFT record.

 One of these is used for the regular name of the file,

 and if a short MS-DOS alias file name is created, it goes in a second file name
attribute.

 NTFS supports the creation of hard links

Slide 34 of 81 NTFS

NTFS File Attributes

 All file (and directory) attributes

 are stored in one of two different ways,

 depending on the characteristics of the attribute—

 especially, its size.

 The following are the methods that NTFS will use to store attributes:

 Resident Attributes: Attributes that require a relatively small
amount of storage space are stored directly within the file's primary
MFT record itself. These are called resident attributes. For
example, the name of the file, and its creation, modification and
access date/time-stamps are resident for every file.

 Non-Resident Attributes: If an attribute requires more space
than is available within the MFT record,

 it is not stored in that record, obviously.

 Instead, the attribute is placed in a separate location.

 A pointer is placed within the MFT that leads to the location of the
attribute.

 This is called non-resident attribute storage.

Slide 35 of 81 NTFS

External attributes

 In practice, only the smallest attributes can fit into MFT records,
since the records are rather small.

 Many other attributes will be stored non-resident, especially the
data of the file, which is also an attribute.

 Non-resident storage can itself take 2 forms.

 If the attribute doesn't fit in the MFT but pointers to the data do fit,

 then the data is placed in a data run,

 also called an extent, outside the MFT,

 and a pointer to the run is placed in the file's MFT record.

 In fact, an attribute can be stored in many different runs, each with a
separate pointer.

 If the file has so many extents that even the pointers to them
won't fit,

 the entire data attribute may be moved to an external attribute

 in a separate MFT record entry,

 or even multiple external attributes.

Slide 36 of 81 NTFS

NTFS system defined attributes

 Attribute List:

 This is a "meta-attribute":

 an attribute that describes other attributes.

 If it is necessary for an attribute to be made non-resident,

 this attribute is placed in the original MFT record

 to act as a pointer to the non-resident attribute.

 Bitmap:

 Contains the cluster allocation bitmap.

 Used by the $Bitmap metadata file.

 Data:

 Contains file data.

 By default, all the data in a file is stored in a single data attribute—

 even if that attribute is broken into many pieces due to size,

 it is still one attribute—

 but there can be multiple data attributes for special applications.

Slide 37 of 81 NTFS

NTFS system defined attributes

 Extended Attribute (EA) and Extended Attribute Information:

 These are special attributes

 that are implemented for compatibility with OS/2 use of NTFS

partitions.

 They are not used by Windows NT/2000 to my knowledge.

 File Name (FN):

 This attribute stores a name associated with a file or directory.

 Note that a file or directory can have multiple file name attributes, to

allow the storage of the "regular" name of the file,

 along with an MS-DOS short filename alias and

 also POSIX-like hard links from multiple directories.

Slide 38 of 81 NTFS

NTFS system defined attributes

 Index Root Attribute:

 This attribute contains the actual index of files contained within a

directory,

 or part of the index if it is large.

 If the directory is small, the entire index will fit within this attribute

in the MFT;

 if it is too large, some of the information is here and the rest is stored in

external index buffer attributes.

 Index Allocation Attribute:

 If a directory index is too large to fit in the index root attribute,

 the MFT record for the directory will contain an index allocation

attribute,

 which contains pointers to index buffer entries containing the rest of

the directory's index information.

Slide 39 of 81 NTFS

NTFS system defined attributes

 Security Descriptor (SD): This attribute contains security
information that controls access to a file or directory. Access
Control Lists (ACLs) and related data are stored in this attribute.
File ownership and auditing information is also stored here.

 Standard Information (SI): Contains "standard information" for all
files and directories. This includes fundamental properties such as
date/time-stamps for when the file was created, modified and
accessed. It also contains the "standard" FAT-like attributes
usually associated with a file (such as whether the file is read-only,
hidden, and so on.)

 Volume Name, Volume Information, and Volume Version:

 These three attributes store

 key name, version and other information about the NTFS volume.

 Used by the $Volume metadata file.

Slide 40 of 81 NTFS

NTFS Reparse Points
 ability to create special file system functions and

 associate them with files or directories.

 This enables the functionality of the NTFS file system to be enhanced and extended
dynamically.

 The feature is implemented using objects that are called reparse points.

 Use of reparse points begins with applications.

 An application that wants to use the feature
 stores data specific to the application-

 which can be any sort of data at all—

 into a reparse point.

 The reparse point is tagged with an identifier
 specific to the application

 and stored with the file or directory.

 A special application-specific filter (a driver of sorts)
 is also associated with

 the reparse point tag type

 and made known to the file system.

Slide 41 of 81 NTFS

Special reparse points

 Symbolic Links:

 Symbolic linking allows you to create a pointer from one area of the

directory structure

 to the actual location of the file elsewhere in the structure.

 a symbolic link is a reparse point that redirect access from one file to

another file.

 Junction Points:

 A junction point is similar to a symbolic link,

 but instead of redirecting access from one file to another,

 it redirects access from one directory to another.

Slide 42 of 81 NTFS

Special reparse points

 Volume Mount Points:

 A volume mount point is like a symbolic link or junction point,

 but taken to the next level:

 it is used to create dynamic access to entire disk volumes.

 For example, you can create volume mount points for removable hard disks or other
storage media, or even use this feature to allow several different partitions (C:, D:, E:
and so on) to appear to the user as if they were all in one logical volume.

 Windows 2000 can use this capability to break the traditional limit of 26 drive
letters--using volume mount points, you can access volumes without the need for
a drive letter for the volume. This is useful for large CD-ROM servers that would
otherwise require a separate letter for each disk (and would also require the user to
keep track of all these drive letters!)

 Remote Storage Server (RSS):

 This feature of Windows 2000 uses a set of rules to determine

 when to move infrequently used files on an NTFS volume to archive storage
(such as CD-RW or tape).

 When it moves a file to "offline" or "near offline" storage in this manner,

 RSS leaves behind reparse points that contain the instructions necessary

 to access the archived files, if they are needed in the future.

Slide 43 of 81 NTFS

NTFS Security and Permissions

 General NTFS Security Concepts

 access rights for files and directories based on user or group accounts.

 There are 3 other important overall concepts in NTFS security:

 object ownership

 permission inheritance

 auditing.

 Ownership is a special property right for NTFS objects that gives file
owners the capability of granting permissions to others.



 NTFS is also designed to propagate permissions down the hierarchy of
the directory structure, under the control of the user.

 This permission inheritance feature allows permissions to be assigned
to groups of objects automatically. It also allows permissions to be
automatically applied to new files that are created within an existing
directory structure.

 Finally, auditing allows administrators to monitor changes to files or
directories.

Slide 44 of 81 NTFS

Access Control Lists (ACLs) and Access

Control Entries (ACEs)

 Management of security and access to NTFS objects

 begins in the same place where everything else begins in NTFS:

 in the Master File Table (MFT).

 The MFT record for every file and directory on an NTFS volume

contains a security descriptor (SD) attribute. The name of this

attribute makes rather clear what it contains: information related to

security and permissions for the corresponding object.

 One of the most important elements within the security descriptor

for any object is the set of lists within it, which dictate which users

may access the object, and in what manner.

Slide 45 of 81 NTFS

Access Control Lists (ACLs) and Access

Control Entries (ACEs)

 These are called access control lists or ACLs.

 Every object in an NTFS partition has 2 different types of access

control lists:

 1. System Access Control List (SACL):

 This ACL is managed by the system (thus the name) and

 is used to control auditing of attempts to access the object.

 2. Discretionary Access Control List (DACL):

 This is the "real" ACL. :^)

 Well, it is the one that most people are primarily concerned with,

 because it is where permissions are stored that control what users and

groups of users are allowed what type of access to the object.

 If you hear someone refer to an object's ACL in the singular, this is the

one they mean.

Slide 46 of 81 NTFS

ACE

 each entry in an ACL is called an access control entry or ACE.

 Each ACE contains:

 an ID code that identifies the user or group to which the ACE applies,

 and then information about the specific permission settings that are to

be applied to that user or group.

 Many different ACEs can be placed into a list,

 allowing the access of various types to be granted or denied for a

variety of different users and groups.

 Some groups have special meaning, such as group "Everyone".

Slide 47 of 81 NTFS

NTFS Permissions
 When Windows NT was built, six different permission types were

created for NTFS objects.

 When Windows 2000 was introduced, the six permission types above
were "broken down" into 13 different permission components, to allow
for more "fine-tuned" control over different kinds of access.

Slide 48 of 81 NTFS

Permission Types (Windows NT) Permission Components

(Windows 2000 and

Windows NT 4.0 SCM) Read

(R)
Write

(W)
Execute

(X)
Delete

(D)
Change

Permissions (P)
Take Ownership

(O)

Traverse Folder /

Execute File

List Folder /

Read Data

Read Attributes

Read Extended

Attributes

Create Files /

Write Data

Create Folders /

Append Data

Write Attributes

Write Extended

Attributes

Delete Subfolders and

Files

Delete

Read Permissions

Change Permissions

Take Ownership

Slide 49 of 81 NTFS

Standard Permission Groups

 To avoid the necessity

 of always setting low-level permissions,

 Windows defines standard permission groups.

 Under the more advanced Windows 2000 scheme,

 there are 13 different permission components,

 which are collected into 6 different standard groups

Slide 50 of 81 NTFS

Permission Types Granted

(Applies Only To Appropriate Object Types) Standard

Permission

Group

Object

Types

Affected Read

(R)
Write

(W)
Execute

(X)
Delete

(D)

Change

Permissions

(P)

Take

Ownership

(O)

Description

No Access
Folders

or Files

Denies all access to the file or

folder. The user can see the name of

the object, but cannot do anything

with it.

List
Folders

Only
Users can see the list of files in the

folder and traverse subfolders, but

cannot view or execute files.

Read
Folders

or Files
Users can read files and folders,

execute files and traverse folders,
but cannot change anything.

Add
Folders

Only

Users can add files or subfolders to

the folder, and can traverse

subfolders, but cannot read or

execute files.

Add &

Read
Folders

Only
Users can add files or subfolders to

the folder, and can read and execute

files in the folder as well.

Change
Folders

or Files

The user can read, write, execute or

delete the file, or if applied to a

folder, the files and subfolders

within the folder. Note that this

does not grant access to delete the

folder itself. The user also cannot

change permissions on the file or

folder, or take ownership of it.

Full

Control
Folders

or Files

All permissions are granted. This

also includes the special permission

"Delete Subfolders and Files",

which can only be given through

the "Full Control" group under

Windows NT.

Slide 51 of 81 NTFS

Ownership and Permission Assignment

 Every object within the NTFS volume has an owner,

 which is a user identified by the object as being the one who

controls it.

 By default, the user who creates a file or folder becomes its

owner.

 The significance of ownership is that the owner of a file or

folder always has the ability to assign permissions for that

object.

 The owner can decide what permissions should be applied to the

object, controlling others' access to the file or folder.

Slide 52 of 81 NTFS

Ownership and Permission Assignment

 The two special permissions that are associated with

ownership and permission assignment are:

 "Change Permissions" (P)

 "Take Ownership" (O)

 If a user is granted the "Change Permissions" permission, the

user can change the permission settings for the object even if

he or she does not own it.

 If a user has "Take Ownership" permission,

 the user has the ability to take over ownership of the resource,

 and of course,

 once it is owned the user can do anything he or she wants with

the permissions.

Slide 53 of 81 NTFS

Static Permission Inheritance

 When you are using Windows NT and

 create a new subfolder or file within a folder,

 the new object is given a default set of permissions

 by copying

 the current set of permissions associated with the object's parent

folder.

 This is called permission inheritance, or sometimes, propagation.

 Under NT's inheritance model, this only happens once, at the time

the object is created. For this reason, conventional inheritance under

NT is also called static permission inheritance,

 to distinguish it from the dynamic inheritance used by Windows

2000.

Slide 54 of 81 NTFS

Dynamic Permission Inheritance and

Advanced Inheritance Control

 This dynamic linking method solves

 the two biggest problems with the static inheritance model.

 First

 any changes to the parent folder

 are automatically inherited by the child objects.

 Second

 any changes that were made to the child object

 are not destroyed by this automatic propagation.

Slide 55 of 81 NTFS

Windows 2000 advanced inheritance

 Child Protection:

 The main security properties dialog box for each object contains a

check box labeled "Allow inheritable permissions from parent to

propagate to this object".

 If the check in this box is cleared,

 this breaks the normal inheritance link between this child and its

parent (and higher-level ancestors as well).

 When this is done, the child will no longer dynamically inherit

permissions from higher up in the directory tree. Such a child object is

said to be protected from inheritance changes.

 Object Selection Control:

 When changing permissions on a folder,

 you can choose if the permissions will be applied to

 any combination of the folder itself, files within it,

 or subfolders within it.

Slide 56 of 81 NTFS

Windows 2000 advanced inheritance
 Recursion Control:

 An option exists in the dialog box where individual permissions are assigned called
"Apply these permissions to objects and/or containers within this container
only".

 The name of this option is horribly confusing.

 What it means is that, if selected, permissions you choose are applied only to the
folder's immediate children, but not lower-level objects.

 So if this were chosen as we selected a permission for the "C:\Documents" folder
in the example above, changes would propagate to "C:\Documents\Exec" but not
"C:\Documents\Exec\Payroll-Projections", the item two levels down.

 Forced Propagation:

 An option called "Reset permissions on all child objects and enable
propagation of inheritable permissions" is provided. This works the same
way as the "Replace Permissions on Subdirectories" and "Replace
Permissions on Existing Files" options from the older Windows NT static
permission model.

 When selected, NTFS will force propagation down to all child objects and
remove any permissions that were directly assigned to those child
objects. This allows administrators to easily "fix" permission problems in
large directory structures.

Slide 57 of 81 NTFS

Permission Resolution

 Every time a user attempts a particular type of access to an object on

NTFS, the system must determine if the access should be allowed.

 In theory, this is a simple matter of looking at the access control lists

for the object, seeing what the permission settings are for the user,

and determining if the desired access is allowed.

 Unfortunately, in reality, it's not this simple. :^)

 Since every object can have many different permission settings, it

is possible that several different permission settings might apply to a

particular object and access method.

 Furthermore, it is possible that these permission settings might

conflict. When this occurs, the system must engage in a process of

resolving the various permissions to determine which ones should

govern the access.

Slide 58 of 81 NTFS

Auditing

 When auditing is enabled, the system can be set to keep track of
certain events.

 When any of these events occur, the system will make an entry in a special
auditing log file that can be read by administrators or others with the
appropriate permission level.

 Each entry will indicate the type of event, the date and time that it occurred,
which user triggered the event, and other relevant information.

 Auditing within NTFS is really just a small part of the various
auditing features offered by the Windows NT and Windows 2000
operating systems.

 These tools allow administrators to keep track of everything from logins,
to the use of printers, to system errors. Within NTFS, auditable
events are generally accesses of various types, roughly corresponding
to the different types of permissions.

 Auditing can be selected for files and for folders, and can be
selected for individual objects or hierarchies of folders, just like
permissions can.

Slide 59 of 81 NTFS

NTFS Reliability Features

 NTFS was designed as a transaction-based or transactional file

system

 A special activity log is maintained by the system

 (in fact, it is one of NTFS's metadata files).

 Every time a change is made to any part of the volume,

 the system records the change in the activity log.

 These changes include:

 creation

 deletion

 or modification

 of files or directories

Slide 60 of 81 NTFS

Transaction Recovery

 When recovery is performed,

 the file system examines the NTFS volume,

 looking at the contents of the activity log.

 It scans all log entries back to the last checkpoint, and performs a
three-pass recovery procedure:

 Analysis Pass: The system analyzes the contents of the log

 to determine

 what parts of the volume need to be examined

 and/or corrected.

 Redo Pass:

 The system "redoes" all completed transactions

 that were recorded since the last checkpoint.

 Undo Pass:

 The system "undoes" (or rolls back) all incomplete transactions to
ensure file integrity.

Slide 61 of 81 NTFS

Change (USN) Journals

 Under Windows 2000, NTFS 5.0 partitions can be set to keep track
of changes to files and directories on the volume, providing a
record of what was done to the various objects and when.

 When enabled, the system records all changes made to the
volume in the Change Journal, which is the name also used to
describe the feature itself.

 Change Journals work in a fairly simple manner. One journal is
maintained for each NTFS volume, and it begins as an empty file.

 Whenever a change is made to the volume, a record is added to
the file.

 Each record is identified by a 64-bit Update Sequence Number or
USN. (In fact, Change Journals are sometimes called USN Journals.)

 each record in the Change Journal contains the USN, the name of the
file, and information about what the change was

 change Journal will contain an entry that indicates that the data was
written, but not the contents of the data itself.

Slide 62 of 81 NTFS

Change (USN) Journals

 For starters, it could be very useful for system-level utilities.

 For example, anti-virus programs could make use of change

journals to detect unauthorized changes to files.

 Backup programs could also make use of the facility to determine

which files had changed since the last time a backup was

performed.

 Programs that perform system management tasks such as archival

or replication could also make good use of this feature.

Slide 63 of 81 NTFS

Error Correction and Fault Tolerance
 NTFS includes several fault tolerance features.

 some of these capabilities are implemented through the use of the

NTFS fault-tolerant disk driver, called "FTDISK"

 Transactional Operation:

 The way that NTFS handles transactions as atomic units,

 and allows transaction recovery,

 are key fault tolerance features that I have described elsewhere in this

section.

 Recovery is performed automatically whenever the system is started.

 Software RAID Support: NTFS partitions can be set up to use

software RAID if the appropriate version of Windows NT or 2000

is used. For more information, see the full discussion of RAID.

Slide 64 of 81 NTFS

Error Correction and Fault Tolerance
 Dynamic Bad Cluster Remapping:

 When the fault-tolerant disk driver is used, the file system has the ability to

automatically detect when bad clusters have been encountered during read

or write operations.



 When a bad cluster is found, the file system will automatically relocate

the data from the bad location and mark the cluster bad so it will not be

used in the future.

 Now, the FAT file system includes the ScanDisk utility that can do this as

well, but you must run it manually--with NTFS this can be done

automatically.

 Furthermore, ScanDisk can only identify clusters that have already gone bad,

at which point, data may be lost.

 FTDISK driver will actually read back data as it is written (sometimes called a

"verify" operation) ensuring that data is unlikely to be lost due to a bad cluster at

the time of a write. (Bear in mind, however, that it is possible for an area of he disk

to "go bad" between the time that the data is written and the time that it is read

back.)

Slide 65 of 81 NTFS

Volume Management and Fault Tolerance

 FtDisk, the fault tolerant disk driver for 2000, provides several

ways to combine multiple SCSI disk drives into one logical volume.

 Logically concatenate multiple disks to form a large logical

volume, a volume set.

 RAID level 0: Interleave multiple physical partitions in round-robin

fashion to form a stripe set (also called RAID level 0, or “disk

striping”).

 Variation: stripe set with parity, or RAID level 5.

 Disk mirroring, or RAID level 1, is a robust scheme that uses a

mirror set — two equally sized partitions on tow disks with identical

data contents.

 To deal with disk sectors that go bad, FtDisk, uses a hardware

technique called sector sparing and NTFS uses a software

technique called cluster remapping.

Slide 66 of 81 NTFS

Volume Set On Two Drives

Slide 67 of 81 NTFS

Stripe Set on Two Drives – RAID 0

Slide 68 of 81 NTFS

Mirror Set on Two Drives – RAID 1

Slide 69 of 81 NTFS

Stripe Set With Parity on Three Drives-RAID 5

Slide 70 of 81 NTFS

Fragmentation and Defragmentation

 In fact, due to their complexity, NTFS volumes suffer from a variety of

different types of fragmentation.

 Unlike FAT, where a simple cluster allocation system is used, NTFS uses

the Master File Table and a combination of resident and non-resident

attributes to store files.

 Due to the flexible way that data is stored, and that additional data storage

areas are added as needed, the result can be pieces of data spread out over

the volume, particularly when small files grow into large ones. Remember that

while NTFS has a much better design than FAT, at its core it does still store

data in clusters. The addition and removal of data storage extents causes

much of the fragmentation of files and directories. As the MFT grows, it itself

can become fragmented, reducing performance further.

 In its wisdom, Microsoft decided to license the Diskeeper defragmenter

technology and include it in Windows 2000, so the operating system now

includes a built-in defragmenter, though it is likely either less capable or

slower than the full Diskeeper program sold by Executive Software

Slide 71 of 81 NTFS

Other NTFS Features and Advantages

 NTFS offers a

 superior architecture,

 support for larger files,

 security features such as access control and logging,

 enhanced reliability

 Other features:

 Compression

 POSIX support

 Encryption

 Disk quota

 Sparse file suport

Slide 72 of 81 NTFS

Compression

 built into NTFS is file-based compression

 that can be used to compress individual files or folders

 Under NTFS, you can easily compress one or more files or folders

by opening their properties and telling the operating system to

compress them.

 The compression is handled by the operating system during

writes,

 and decompression is automatic whenever an application

needs to read the file.

Slide 73 of 81 NTFS

POSIX support

 POSIX is a set of standards that was created to enhance the
portability of applications between computer systems

 There are actually a number of different POSIX standards.

 NTFS specifically supports the POSIX.1 standard, which is the
standard for application program interfaces based on the "C"
programming language.

 In practical terms, POSIX support is manifested most obviously in
NTFS's support for special file naming provisions.

 For example, NTFS allows for file names to be case-sensitive, and
also allows for hard links to be established, enabling multiple
names for the same file within the file system. The "last accessed"
date/time stamp for files is also part of POSIX support.

Slide 74 of 81 NTFS

Encryption

 encryption capability in NTFS 5.0, as part of Windows 2000.

 This feature is called the Encrypting File System or EFS.

 Using EFS, it is possible to encrypt important data before storing it

on the NTFS partition.

 Without the proper decryption key, the data cannot be

accessed.

 This makes it impossible for anyone to easily access data stored on

NTFS volumes by booting the PC with a floppy disk and using a disk

sector editor, for example.

 It also offers some peace of mind to those who carry critically

sensitive information around on notebook PCs, which are frequently

lost--or "liberated", if you know what I mean...

Slide 75 of 81 NTFS

Disk Quotas

 The quota system implemented in NTFS 5.0 is quite flexible and

includes many capabilities:

 You have the ability to do the following:

 Set quotas on a per-user or per-volume basis. This lets you limit space

used on particular disks, or overall total space use for a person.

 Set a "limit" level and a "warning" level, or both. The user is blocked

from using any disk space above the "limit" level. He or she may use

space beyond the "warning" level, but a warning will be generated.

 Monitor and log events that cause a user to go over the "limit" or

"warning" levels.

Slide 76 of 81 NTFS

Sparse File Support
 To improve the efficiency of storing sparse files without necessitating the

use of compression, a special feature was incorporated into NTFS under
Windows 2000.

 A file that is likely to contain many zeroes can be tagged as a sparse
file. When this is done, a special attribute is associated with the file, and
it is stored in a different way from regular files.

 The actual data in the files is stored on the disk,

 and NTFS keeps track of where in the file each chunk of data belongs.

 The rest of the file's bytes--the zeroes--are not stored on disk.

 NTFS seamlessly manages sparse files so that they appear to applications
like regular files.

 So, for example, when an application asks to read a particular sequence of
bytes from a sparse file, NTFS will return both regular data and zeroes, as
appropriate, just as it would for a regular file.

 The application can't tell that NTFS is playing "storage games" on the disk.

Slide 77 of 81 NTFS

NTFS Performance and Overhead

Considerations
 The performance implications of NTFS features mean that using

NTFS may result in a slight decrease in performance compared to

the use of a simpler file system such as FAT.

 Here are a few tips and issues to keep in mind when considering how

to implement NTFS partitions, which may partially mitigate this

performance impact:

 Use Only What You Need:

 Some of the fancier features in NTFS can impose more significant

overhead penalties on the system than others, both in terms of

processing power and the use of disk space.

 If you need those features, then in most cases they are worth the cost.

 However, it makes sense to avoid using features that you don't need.

 For example,

 don't compress frequently used files if you have lots of disk space;

 don't enable lots of audit logging unless you really require it, and so on.

Slide 78 of 81 NTFS

NTFS Performance and Overhead

Considerations
 Use Adequate Hardware:

 Trying to implement a complex system on a low-powered system with a
small, slow hard disk is probably asking for trouble.

 The overhead associated with NTFS becomes less and less noticeable on
newer hardware (which is part of what is allowing Microsoft to add even
more new features to the file system.)

 Watch The Cluster Size:

 While most people think of cluster size as being strictly a FAT file system
issue, NTFS also uses clusters, and its performance is impacted by the
choice of cluster size.

 Cluster size is in turn affected by the choice of partition size. In addition,
under Windows NT the cluster size is different if the partition was
converted from FAT.

 Fragmentation and Defragmentation:

 Contrary to a popular myth, NTFS partitions do become fragmented and
performance can benefit from regular defragmenting.

 Windows 2000 comes with a defragmenter built into it; for Windows NT
you will need to use a third-party tool.

Slide 79 of 81 NTFS

NTFS Partitioning Strategies

 here are a few specific points that you may want to keep in mind
when partitioning a system with NTFS:

 Limit the Number of Partitions:

 NTFS is designed to be able to gracefully handle much larger
partitions than FAT can.

 As a result, you should avoid the temptation to "go overboard" and
segment large disks or RAID arrays into many little volumes.

 Doing this makes the system more difficult to manage in most cases
and results in not much improvement in performance.

 Consider A Dedicated Operating System Partition:

 Many people who set up NTFS systems use two partitions.

 The "C:" (boot) volume is made smaller (a few gigabytes) and
dedicated to the operating system and the installation of low-level
utilities and administration tools.

 The other volume (normally "D:") is used for applications and data. This
split may make administration easier and avoid problems associated
with using too large a boot partition size with Windows NT.

Slide 80 of 81 NTFS

NTFS Partitioning Strategies
 Adjust Cluster Sizes If Needed:

 The default cluster size on an NTFS partition can be overridden, as described
here.

 You may wish to use larger or smaller clusters than the system would normally
select, depending on your needs.

 For example, you may want a larger cluster size for a partition that will be
holding large multimedia files.

 Do be aware that there can be consequences to going away from the default
values. For example, NTFS compression will not work on a volume that uses
clusters greater than 4 Kib in size.

 Beware of Converting Partitions to NTFS Under Windows NT:
 Converting a partition from FAT to NTFS under Windows NT

 results in the NTFS partition being assigned the smallest possible cluster size,
512 bytes.

 This may cause a degradation in performance.

 Multiple Operating System Compatibility:
 Some systems use multiple operating systems, some of which cannot natively

read and write NTFS partitions. For example, Windows 9x/ME cannot read and
write NTFS partitions.

 On these machines, some people create one FAT partition, in addition to any
NTFS partitions, for compatibility and file transfer purposes.

 Note that this is not required for accessing files on an NTFS partition over a
network; files on an NTFS partition can be shared across a network even if the
network client's operating system cannot use NTFS locally.

Slide 81 of 81 NTFS

NTFS vs. FAT

 Most frequently, the question of NTFS vs. FAT

 is answered

 by looking at the advantages and disadvantages of NTFS,

 and comparing it to the simpler FAT file system.

 This can be made easier by assessing 3 general questions:

 1. Do you need the added features and capabilities that NTFS
provides but FAT does not?

 2. Are you willing to accept the additional hardware requirements
necessary to use NTFS, and to deal with its drawabcks and
limitations?

 3. Can you invest the additional time and resources for proper
administration of an NTFS system?

