
Slide 1 of 34 Disk Scheduling

Disk Scheduling

 Idea

 Put N incoming disk requests in the queue

 Execute them in the optimal order

 Goal

 Optimizing disk I/O performances

 Disk Scheduling placement:

 External:

 In the kernel

 In the disk driver

 Internal

 In the disk drive itself (command queuing)

Slide 2 of 34 Disk Scheduling

Disk Scheduling

Seek based algorithms

Positional based algorithms

Slide 3 of 34 Disk Scheduling

Disk Scheduling

 Full Knowledge based Algorithms
 Based on CHS

 Algorithms include:

 Zones

 Defect management

 Reserved spaces

 Rotational capability

 Disk drive caching

 Seek based algorithms

 Position based algorithms

 Disk caching

 Included in the algorithm

 excluded in the algorithm

 LBN-Based Algorithms
 Only seek based algorithms

Slide 4 of 34 Disk Scheduling

Seek based algorithms

FIFO (FCFS)

SSTF

SCAN C-SCAN

LOOK C-LOOK

VSCAN(x.x)

Slide 5 of 34 Disk Scheduling

Disk Scheduling-seek based

 The operating system is responsible for using hardware efficiently —
 for the disk drives,

 this means having a fast access time and disk bandwidth.

 Access time has two major components:
 Seek time

 is the time

 for the disk are to move the heads

 to the cylinder containing the desired sector.

 Rotational latency

 is the additional time

 waiting for the disk

 to rotate the desired sector to the disk head.

 Minimize seek time

 Seek time  seek distance =F(seek distance)

 Disk bandwidth is
 the total number of bytes transferred,

 divided by the total time between

 the first request for service and

 the completion of the last transfer.

Slide 6 of 34 Disk Scheduling

Seek time

Slide 7 of 34 Disk Scheduling

Disk Scheduling (Cont.)

 Several algorithms exist

 to schedule

 the servicing of disk I/O requests.

 We illustrate them with a request queue (0-199).

 98, 183, 37, 122, 14, 124, 65, 67

 Head pointer 53

Slide 8 of 34 Disk Scheduling

FCFS (First Come First Served)

Illustration shows total head movement of 640 cylinders.

Slide 9 of 34 Disk Scheduling

FCFS features

Performances

poor

Starvation

Fairness, small starvation

Slide 10 of 34 Disk Scheduling

SSTF (Shortest Seek Time First)

 Selects the request

 with the minimum seek time

 from the current head position.

 SSTF scheduling is a form of SJF scheduling;

 may cause starvation of some requests.

 Illustration shows total head movement of 236 cylinders.

Slide 11 of 34 Disk Scheduling

SSTF (Cont.)

Slide 12 of 34 Disk Scheduling

SSTF features

Performances

Good to very good

Starvation

Big starvation

Too long latency in small disk zones

Slide 13 of 34 Disk Scheduling

SCAN - Elevator

 The disk arm

 starts at one end of the disk,

 and moves toward the other end,

 servicing requests until it gets to the other end of the disk,

 where the head movement is reversed

 and servicing continues.

 Sometimes called the elevator algorithm.

 Illustration shows total head movement of 208 cylinders.

Slide 14 of 34 Disk Scheduling

SCAN (Cont.)

Slide 15 of 34 Disk Scheduling

C-SCAN

 Provides a more uniform wait time than SCAN.

 The head moves from one end of the disk to the other.

 servicing requests as it goes.

 When it reaches the other end, however,

 it immediately returns to the beginning of the disk,

 without servicing any requests on the return trip.

 Treats the cylinders

 as a circular list

 that wraps around

 from the last cylinder to the first one.

Slide 16 of 34 Disk Scheduling

C-SCAN (Cont.)

Slide 17 of 34 Disk Scheduling

SCAN, C-SCAN features

 Performances
SCAN good

C-SCAN: one full stroke without servicing

 Starvation
SCAN:

central zone is privileged related to outer zones

C-SCAN:

small starvation

Slide 18 of 34 Disk Scheduling

C-LOOK

 Version of C-SCAN

 arm only goes

 as far as the last request in each direction,

 then

 reverses direction immediately,

 without first going

 all the way to the end of the disk.

Slide 19 of 34 Disk Scheduling

C-LOOK (Cont.)

Slide 20 of 34 Disk Scheduling

Look, C-Look features

 Performances
Look: good to very good

C-Look: one big stroke without servicing

 Starvation
Look:

central zone is privileged related to outer zones

C-Look:

small starvation

Slide 21 of 34 Disk Scheduling

VSCAN(R)

 Geist and Daniel have proposed a continuum of algorithms
called V(R), where R is a parameter

 SSFT----VSCAN(R)----SCAN

 The idea is to pick the next request according to SSTF,

 except

 to add a penalty of R times

 the total number of cylinders

 for reversing direction.

 V(0) is SSTF

 V(1) is SCAN

 They suggest V(0.2)

 as a good compromise

 that performs better than SCAN,

 but avoids the high variance and starvation difficulties of SSTF .

Slide 22 of 34 Disk Scheduling

Selecting a Disk-Scheduling Algorithm

 SSTF is common and has a natural appeal

 SCAN and C-SCAN perform better

 for systems

 that place a heavy load on the disk.

 Performance depends on the number and types of requests.

 Requests for disk service can be influenced by the file-

allocation method.

 The disk-scheduling algorithm

 should be written as a separate module of the operating system,

 allowing it to be replaced with a different algorithm if necessary.

 Either SSTF or LOOK is a reasonable choice

 for the default algorithm.

Slide 23 of 34 Disk Scheduling

Position-based algorithms

 Rotationally-sensitive scheduling algorithms

 Scheduling with Full Knowledge of LBA-CHS

 Zones

 Defect management

 Reserved spaces

 Rotational capability

 Disk drive caching

 Names:

 SAFT = Shortest Access Time First

 SPTF = Shortest Position Time First

Slide 24 of 34 Disk Scheduling

Disadvantage of SPTF

Full knowledge of LBA to CHS mapping

Time intensive operation

Dominant starvation (like SSTF)

Slide 25 of 34 Disk Scheduling

Reducing starvation

Batch algorithms

Aged algorithms

Slide 26 of 34 Disk Scheduling

Batch algorithms

 Batch algorithms are ones

 that prevent starvation

 by temporarily preventing new requests

 from joining the queue

 and

 thereby delaying old ones indefinitely.

 The batch algorithms described here can be used

 continuously,

 or

 in a two-mode fashion:

 invoked only when starvation has been observed

 to bring it into check and prevent further occurrences.

 The two-mode behavior attempts

 to benefit from the high throughput of SATF,

 while limiting the damage

 caused by starvation

 by use of the batch technique.

Slide 27 of 34 Disk Scheduling

BSAFT

 BSAFT = Batched Shortest Access Time First

 simplest batched algorithm (BSATF).

 “no new requests” rule

 It operates by:

create a queue

processing all the requests

that are currently on the queue to completion

before admitting any more.

Slide 28 of 34 Disk Scheduling

LBSATF

 LBSATF = Leaky Batched Shortest Access Time First

 relaxed the “no new requests” rule.

 Deadline = projected end time for complete of queue

 If a new request arrives,

 it is added to the batch

 if a schedule can be found

 that will complete it

 as well as all the existing requests

 before the existing deadline.

 If not,

 the request is put aside

 until the next batch is taken.

Slide 29 of 34 Disk Scheduling

Aged algorithms

 SPTF is highly susceptible to request starvation.

 ASPTF denoted as Aged Shortest Positioning Time First.

 ASPTF adjusts each positioning delay prediction (Tpos)

 by subtracting a weighted value

 corresponding to the amount of time

 the request has been waiting for service (Twait).

 The resulting effective positioning delay (Teff)
 is used

 in selecting the next request:

Slide 30 of 34 Disk Scheduling

Full Knowledge with disk caching

 modified versions

 which track the contents of the on-board cache

 and

 estimate a positioning time of zero

 for any request that can be satisfied (at least partially) from the cache.

 The resulting algorithms are denoted as

 SPCTF Shortest Positioning (w/Cache) Time First

 (ASPCTF) Aged Shortest Positioning (w/Cache) Time First.

Slide 31 of 34 Disk Scheduling

Comparison of algorithms

 LBA based and full knowledge algorithms

 have similar performances

 in the case of seek based algorithms

 C-LOOK,

 which always schedules requests in logically ascending order,

 best exploits the prefetching cache for workloads

 with significant read sequentially.

 For random workloads,

 C-LOOK has been shown to provide slightly inferior
performance

 to other seek-reducing algorithms (e.g., SSTF and LOOK).

 In addition, the LBN-based C-LOOK algorithm

 is straightforward and

 relatively simple to implement.

Slide 32 of 34 Disk Scheduling

SPFT conclusions

 SPTF algorithms achieve higher performance.

 The use of such algorithms requires

 thorough knowledge of the disk's current state

 as well as the management schemes

 employed by the disk drive firmware.

 The computational cost is very high

Slide 33 of 34 Disk Scheduling

C-LOOK conclusions

 Best algorithm for modern disk drives, probably

 Why?

 always schedules requests in logically ascending order

 best exploits the disk cache

 LBN C-Look

 Easy implementation

Slide 34 of 34 Disk Scheduling

Technology trend – command queuing

 command queuing

 =

put disk scheduling

 into disk drive, itself

